WELCOME TO HEALTH WORLD!!!

Search 2.0


The generally accepted definition of health is "a state of complete physical, mental, and social well-being and not merely the absence of disease or infirmity"

Sunday, April 26, 2009

Cirrhosis




Cirrhosis
is a consequence of chronic liver disease characterized by replacement of liver tissue by fibrous scar tissue as well as regenerative nodules, leading to progressive loss of liver function. Cirrhosis is most commonly caused by alcoholism, hepatitis B and C and fatty liver disease but has many other possible causes. Some cases are cryptogenic, i.e, of unknown cause, but most of these are probably due to previously unrecognised fatty liver disease.

Ascites (fluid retention in the abdominal cavity) is the most common complication of cirrhosis and is associated with a poor quality of life, increased risk of infection, and a poor long-term outcome. Other potentially life-threatening complications are hepatic encephalopathy (confusion and coma) and bleeding from esophageal varices. Cirrhosis is generally irreversible once it occurs, and treatment generally focuses on preventing progression and complications. In advanced stages of cirrhosis the only option is a liver transplant.


Signs and symptoms

Some of the following signs and symptoms may occur in the presence of cirrhosis:

  • Spider angiomata. Vascular lesions consisting of a central arteriole surrounded by many smaller vessels due to an increase in estradiol.
  • Palmar erythema. Exaggerations of normal speckled mottling of the palm, due to altered sex hormone metabolism.
  • Nail changes.
    • Muehrcke's nails - paired horizontal bands separated by normal color due to hypoalbuminemia (low production of albumin).
    • Terry's nails - proximal two thirds of the nail plate appears white with distal one-third red, also due to hypoalbuminemia
    • Clubbing - angle between the nail plate and proximal nail fold > 180 degrees
  • Hypertrophic osteoarthropathy. Chronic proliferative periostitis of the long bones that can cause considerable pain.
  • Dupuytren's contracture. Thickening and shortening of palmar fascia that leads to flexion deformities of the fingers. Thought to be due to fibroblastic proliferation and disorderly collagen deposition. It is relatively common (33% of patients).
  • Gynecomastia. Benign proliferation of glandular tissue of male breasts presenting with a rubbery or firm mass extending concentrically from the nipples. This is due to increased estradiol and can occur in up to 66% of patients.
  • Hypogonadism. Manifested as impotence, infertility, loss of sexual drive, and testicular atrophy due to primary gonadal injury or suppression of hypothalamic or pituitary function.
  • Liver size. Can be enlarged, normal, or shrunken.
  • Splenomegaly (increase in size of the spleen). Due to congestion of the red pulp as a result of portal hypertension.
  • Ascites. Accumulation of fluid in the peritoneal cavity giving rise to flank dullness (needs about 1500 mL to detect flank dullness). It may be associated with hydrocele and penile flomation (swelling of the penile shaft) in men.
  • Caput medusa. In portal hypertension, the umbilical vein may open. Blood from the portal venous system may be shunted through the periumbilical veins into the umbilical vein and ultimately to the abdominal wall veins, manifesting as caput medusa.
  • Cruveilhier-Baumgarten murmur. Venous hum heard in epigastric region (on examination by stethoscope) due to collateral connections between portal system and the remnant of the umbilical vein in portal hypertension.
  • Fetor hepaticus. Musty odor in breath due to increased dimethyl sulfide.
  • Jaundice. Yellow discoloring of the skin, eye, and mucus membranes due to increased bilirubin (at least 2-3 mg/dL or 30 mmol/L). Urine may also appear dark.
  • Asterixis. Bilateral asynchronous flapping of outstretched, dorsiflexed hands seen in patients with hepatic encephalopathy.
  • Other. Weakness, fatigue, anorexia, weight loss.

Complications

As the disease progresses, complications may develop. In some people, these may be the first signs of the disease.

  • Bruising and bleeding due to decreased production of coagulation factors.
  • Jaundice due to decreased processing of bilirubin.
  • Itching (pruritus) due to bile products deposited in the skin.
  • Hepatic encephalopathy - the liver does not clear ammonia and related nitrogenous substances from the blood, which are carried to the brain, affecting cerebral functioning: neglect of personal appearance, unresponsiveness, forgetfulness, trouble concentrating, or changes in sleep habits.
  • Sensitivity to medication due to decreased metabolism of the active compounds.
  • Hepatocellular carcinoma is primary liver cancer, a frequent complication of cirrhosis. It has a high mortality rate.
  • Portal hypertension - blood normally carried from the intestines and spleen through the hepatic portal vein flows more slowly and the pressure increases; this leads to the following complications:
    • Ascites - fluid leaks through the vasculature into the abdominal cavity.
    • Esophageal varices - collateral portal blood flow through vessels in the stomach and esophagus. These blood vessels may become enlarged and are more likely to burst.
  • Problems in other organs.
    • Cirrhosis can cause immune system dysfunction, leading to infection. Signs and symptoms of infection may be aspecific are more difficult to recognize (e.g. worsening encephalopathy but no fever).
    • Fluid in the abdomen may become infected with bacteria normally present in the intestines.
    • Hepatorenal syndrome - insufficient blood supply to the kidneys, causing acute renal failure. This complication has a very high mortality (over 50%).
    • Hepatopulmonary syndrome - blood bypassing the normal lung circulation (shunting), leading to cyanosis and dyspnea (shortness of breath), characteristically worse on sitting up.
    • Portopulmonary hypertension - increased blood pressure over the lungs as a consequence of portal hypertension.


Causes

Cirrhosis has many possible causes; sometimes more than one cause is present in the same patient. In the Western World, chronic alcoholism and hepatitis C are the most common causes.

  • Alcoholic liver disease (ALD). Alcoholic cirrhosis develops in 15% of individuals who drink heavily for more than a decade. There is great variability in the amount of alcohol needed to cause cirrhosis. Alcohol seems to injure the liver by blocking the normal metabolism of protein, fats, and carbohydrates. Patients may also have concurrent alcoholic hepatitis with fever, hepatomegaly, jaundice, and anorexia. AST and ALT are both elevated but less than 300 IU/L with a AST:ALT ratio > 2.0, a value rarely seen in other liver diseases. Liver biopsy may show hepatocyte necrosis, Mallory bodies, neutrophilic infiltration with perivenular inflammation.
  • Chronic hepatitis C. Infection with this virus causes inflammation of and low grade damage to the liver that over several decades can lead to cirrhosis. Can be diagnosed with serologic assays that detect hepatitis C antibody or viral RNA. The enzyme immunoassay, EIA-2, is the most commonly used screening test in the US.
  • Chronic hepatitis B. The hepatitis B virus is probably the most common cause of cirrhosis worldwide, especially South-East Asia, but it is less common in the United States and the Western world. Hepatitis B causes liver inflammation and injury that over several decades can lead to cirrhosis. Hepatitis D is dependent on the presence of hepatitis B, but accelerates cirrhosis in co-infection. Chronic hepatitis B can be diagnosed with detection of HBsAG > 6 months after initial infection. HBeAG and HBV DNA are determined to assess whether patient will need antiviral therapy.
  • Non-alcoholic steatohepatitis (NASH). In NASH, fat builds up in the liver and eventually causes scar tissue. This type of hepatitis appears to be associated with diabetes, protein malnutrition, obesity, coronary artery disease, and treatment with corticosteroid medications. This disorder is similar to that of alcoholic liver disease but patient does not have an alcohol history. Biopsy is needed for diagnosis.
  • Primary biliary cirrhosis. May be asymptomatic or complain of fatigue, pruritus, and non-jaundice skin hyperpigmentation with hepatomegaly. There is prominent alkaline phosphatase elevation as well as elevations in cholesterol and bilirubin. Gold standard diagnosis is antimitochondrial antibodies with liver biopsy as confirmation if showing florid bile duct lesions. It is more common in women.
  • Primary sclerosing cholangitis. PSC is a progressive cholestatic disorder presenting with pruritus, steatorrhea, fat soluble vitamin deficiencies, and metabolic bone disease. There is a strong association with inflammatory bowel disease (IBD), especially ulcerative colitis. Diagnosis is best with contrast cholangiography showing diffuse, multifocal strictures and focal dilation of bile ducts, leading to a beaded appearance. Non-specific serum immunoglobulins may also be elevated.
  • Autoimmune hepatitis. This disease is caused by the immunologic damage to the liver causing inflammation and eventually scarring and cirrhosis. Findings include elevations in serum globulins, especially gamma globulins. Therapy with prednisone +/- azathioprine is beneficial. Cirrhosis due to autoimmune hepatitis still has 10-year survival of 90%+. There is no specific tool to diagnose autoimmune but it can be beneficial to initiate a trial of corticosteroids.
  • Hereditary hemochromatosis. Usually presents with family history of cirrhosis, skin hyperpigmentation, diabetes mellitus, pseudogout, and/or cardiomyopathy, all due to signs of iron overload. Genetic testing may be used to identify HFE mutations. If these are present, biopsy may not need to be performed. Treatment is with phlebotomy to lower total body iron levels.
  • Wilson's disease. Autosomal recessive disorder characterized by low serum ceruloplasmin and increased hepatic copper content on liver biopsy. May also have Kayser-Fleischer rings in the cornea and altered mental status.
  • Alpha 1-antitrypsin deficiency (AAT). Autosomal recessive disorder. Patients may also have COPD, especially if they have a history of tobacco smoking. Serum AAT levels are low. Recombinant AAT is used to prevent lung disease due to AAT deficiency.
  • Cardiac cirrhosis. Due to chronic right sided heart failure which leads to liver congestion.
  • Galactosemia
  • Glycogen storage disease type IV
  • Cystic fibrosis
  • Drugs or toxins
  • Certain parasitic infections


Diagnosis

The gold standard for diagnosis of cirrhosis is a liver biopsy, through a percutaneous, transjugular, laparoscopic, or fine-needle approach. Histologically cirrhosis can be classified as micronodular, macronodular, or mixed, but this classification has been abandoned since it is nonspecific to the etiology, it may change as the disease progresses, and serological markers are much more specific. However, a biopsy is not necessary if the clinical, laboratory, and radiologic data suggests cirrhosis. Furthermore, there is a small but significant risk to liver biopsy, and cirrhosis itself predisposes for complications due to liver biopsy.


Treatment

Generally, liver damage from cirrhosis cannot be reversed, but treatment could stop or delay further progression and reduce complications. A healthy diet is encouraged, as cirrhosis may be an energy-consuming process. Close follow-up is often necessary. Antibiotics will be prescribed for infections, and various medications can help with itching. Laxatives, such as lactulose, decrease risk of constipation; their role in preventing encephalopathy is limited.

However, in recent British research involving animal studies, and more recently, human trials for the treatment of chronic alcoholics, sulfasalazine has been found to reverse the scarring associated with cirrhosis of the liver.

Treating underlying causes

Alcoholic cirrhosis caused by alcohol abuse is treated by abstaining from alcohol. Treatment for hepatitis-related cirrhosis involves medications used to treat the different types of hepatitis, such as interferon for viral hepatitis and corticosteroids for autoimmune hepatitis. Cirrhosis caused by Wilson's disease, in which copper builds up in organs, is treated with chelation therapy (e.g. penicillamine) to remove the copper.

Preventing further liver damage

Regardless of underlying cause of cirrhosis, alcohol and acetaminophen, as well as other potentially damaging substances, are discouraged. Vaccination of susceptible patients should be considered for Hepatitis A and Hepatitis B.


Preventing complications

Ascites

Salt restriction is often necessary, as cirrhosis leads to accumulation of salt (sodium retention). Diuretics may be necessary to suppress ascites.

Esophageal variceal bleeding

For portal hypertension, propranolol is a commonly used agent to lower blood pressure over the portal system. In severe complications from portal hypertension, transjugular intrahepatic portosystemic shunting is occasionally indicated to relieve pressure on the portal vein. As this can worsen encephalopathy, it is reserved for those at low risk of encephalopathy, and is generally regarded only as a bridge to liver transplantation or as a palliative measure.

Hepatic encephalopathy

High-protein food increases the nitrogen balance, and would theoretically increase encephalopathy; in the past, this was therefore eliminated as much as possible from the diet. Recent studies show that this assumption was incorrect, and high-protein foods are even encouraged to maintain adequate nutrition.

Hepatorenal syndrome

The hepatorenal syndrome is defined as a urine sodium less than 10 mmol/L and a serum creatinine > 1.5 mg/dl after a trial of volume expansion without diuretics.

Spontaneous bacterial peritonitis

Cirrhotic patients with ascites are at risk of spontaneous bacterial peritonitis.

Transplantation

If complications cannot be controlled or when the liver ceases functioning, liver transplantation is necessary. Survival from liver transplantation has been improving over the 1990s, and the five-year survival rate is now around 80%, depending largely on the severity of disease and other medical problems in the recipient. In the United States, the MELD score (online calculator) is used to prioritize patients for transplantation. Transplantation necessitates the use of immune suppressants (cyclosporine or tacrolimus).

Decompensated cirrhosis

In patients with previously stable cirrhosis, decompensation may occur due to various causes, such as constipation, infection, increased alcohol intake, medication, bleeding from esophageal varices or dehydration. It may take the form of any of the complications of cirrhosis listed above.

Patients with decompensated cirrhosis generally require admission to hospital, with close monitoring of the fluid balance, mental status, and emphasis on adequate nutrition and medical treatment - often with diuretics, antibiotics, laxatives and/or enemas, thiamine and occasionally steroids, acetylcysteine and pentoxifylline.


Liver diseases

Liver disease is a broad term describing any number of diseases affecting the liver. Many are accompanied by jaundice caused by increased levels of bilirubin in the system. The bilirubin results from the breakup of the hemoglobin of dead red blood cells; normally, the liver removes bilirubin from the blood and excretes it through bile.

  • Hepatitis, inflammation of the liver, caused mainly by various viruses but also by some poisons, autoimmunity or hereditary conditions.
  • Cirrhosis is the formation of fibrous tissue in the liver, replacing dead liver cells. The death of the liver cells can for example be caused by viral hepatitis, alcoholism or contact with other liver-toxic chemicals.
  • Haemochromatosis, a hereditary disease causing the accumulation of iron in the body, eventually leading to liver damage.
  • Cancer of the liver (primary hepatocellular carcinoma or cholangiocarcinoma and metastatic cancers, usually from other parts of the gastrointestinal tract).
  • Wilson's disease, a hereditary disease which causes the body to retain copper.
  • Primary sclerosing cholangitis, an inflammatory disease of the bile duct, likely autoimmune in nature.
  • Primary biliary cirrhosis, autoimmune disease of small bile ducts.
  • Budd-Chiari syndrome, obstruction of the hepatic vein.
  • Gilbert's syndrome, a genetic disorder of bilirubin metabolism, found in about 5% of the population.
  • Glycogen storage disease type II, the build-up of glycogen causes progressive muscle weakness (myopathy) throughout the body and affects various body tissues, particularly in the heart, skeletal muscles, liver and nervous system.

There are also many pediatric liver disease, including biliary atresia, alpha-1 antitrypsin deficiency, alagille syndrome, and progressive familial intrahepatic cholestasis, to name but a few.

A number of liver function tests are available to test the proper function of the liver. These test for the presence of enzymes in blood that are normally most abundant in liver tissue, metabolites or products.


Symptoms of a diseased liver

The external signs include a coated tongue, bad breath, skin rashes, itchy skin, excessive sweating, offensive body odour, dark circles under the eyes, red swollen and itchy eyes, acne rosacea, brownish spots and blemishes on the skin, flushed facial appearance or excessive facial blood vessels.

Other symptoms include jaundice, dark urine, pale stool, bone loss, easy bleeding, itching, small, spider-like blood vessels visible in the skin, enlarged spleen, fluid in the abdominal cavity, chills, pain from the biliary tract or pancrea, and an enlarged gallbladder.

The symptoms related to liver dysfunction include both physical signs and a variety of symptoms related to digestive problems, blood sugar problems, immune disorders, abnormal absorption of fats, and metabolism problems.

The malabsorption of fats may lead to symptoms that include indigestion, reflux, hemorrhoids, gall stones, intolerance to fatty foods, intolerance to alcohol, nausea and vomiting attacks, abdominal bloating, and constipation.

Nervous system disorders include depression, mood changes, especially anger and irritability, poor concentration and "foggy brain," overheating of the body, especially the face and torso, and recurrent headaches (including migraine) associated with nausea.

The blood sugar problems include a craving for sugar, hypoglycaemia and unstable blood sugar levels.


Liver



The liver is a vital organ present in vertebrates and some other animals; it has a wide range of functions, a few of which are detoxification, protein synthesis, and production of biochemicals necessary for digestion. The liver is necessary for survival; a human can only last up to 24 hours without liver function.

The liver plays a major role in metabolism and has a number of functions in the body, including glycogen storage, decomposition of red blood cells, plasma protein synthesis, and detoxification. The liver is also the largest gland in the human body. It lies below the diaphragm in the thoracic region of the abdomen. It produces bile, an alkaline compound which aids in digestion, via the emulsification of lipids. It also performs and regulates a wide variety of high-volume biochemical reactions requiring very specialized tissues.


Anatomy

The adult human liver normally weighs between 1.4 - 1.6 kilograms (3.1 - 3.5 pounds), and it is a soft, pinkish-brown, triangular organ. It is both the largest internal organ and the largest gland in the human body.

It is located on the right side of the upper abdomen below the diaphragm anatomy. The liver lies to the right of the stomach and overlies the gallbladder.

Flow of blood

The splenic vein joins the inferior mesenteric vein, which then together join the superior mesenteric vein to form the hepatic portal vein, bringing venous blood from the spleen, pancreas, stomach, small intestine, and large intestine, so that the liver can process the nutrients and by-products of food digestion.

The hepatic veins of the blood can be from other branches such as the superior mesenteric artery.

Both the portal venules & the hepatic arterioles enter approximately one million identical lobules acini, likened to and changes in the size of chylomicrons lipoproteins of dietary origin brought about by the quantity & types of food fats.

Approximately 60% to 80% of the blood flow to the liver is from the portal venous system, and 1/5th of blood flow is from the hepatic artery.

Flow of bile

The bile produced in the liver is collected in bile canaliculi, which merge to form bile ducts.

These eventually drain into the right and left hepatic ducts, which in turn merge to form the common hepatic duct. The cystic duct (from the gallbladder) joins with the common hepatic duct to form the common bile duct.

Bile can either drain directly into the duodenum via the common bile duct or be temporarily stored in the gallbladder via the cystic duct. The common bile duct and the pancreatic duct enter the duodenum together at the ampulla of Vater.

The branchings of the bile ducts resemble those of a tree, and indeed the term "biliary tree" is commonly used in this setting.

The Biliary Tree.

(The Biliary Tree)

Regeneration

The liver is among the few internal human organs capable of natural regeneration of lost tissue; as little as 25% of a liver can regenerate into a whole liver.

This is predominantly due to the hepatocytes re-entering the cell cycle. There is also some evidence of bipotential stem cells, called ovalocyte, which exist in the Canals of Hering. These cells can differentiate into either hepatocytes or cholangiocytes (cells that line the bile ducts).



Traditional (Surface) anatomy

Peritoneal ligaments

Apart from a patch where it connects to the diaphragm, the liver is covered entirely by visceral peritoneum, a thin, double-layered membrane that reduces friction against other organs. The peritoneum folds back on itself to form the falciform ligament and the right and left triangular ligaments.

These "ligaments" are in no way related to the true anatomic ligaments in joints, and have essentially no functional importance, but they are easily recognizable surface landmarks.

Lobes

Traditional gross anatomy divided the liver into four lobes based on surface features. The falciform ligament is visible on the front (anterior side) of the liver. This divides the liver into a left anatomical lobe, and a right anatomical lobe.

If the liver flipped over, to look at it from behind (the visceral surface), there are two additional lobes between the right and left. These are the caudate lobe (the more superior), and below this the quadrate lobe.

From behind, the lobes are divided up by the ligamentum venosum and ligamentum teres (anything left of these is the left lobe), the transverse fissure (or porta hepatis) divides the caudate from the quadrate lobe, and the right sagittal fossa, which the inferior vena cava runs over, separates these two lobes from the right lobe.

Each of the lobes is made up of lobules, a vein goes from the centre of each lobule which then joins to the hepatic vein to carry blood out from the liver.

On the surface of the lobules there are ducts, veins and arteries that carry fluids to and from them.

Modern (Functional) anatomy

The central area where the common bile duct, hepatic portal vein, and hepatic artery enter is the hilum or "porta hepatis". The duct, vein, and artery divide into left and right branches, and the portions of the liver supplied by these branches constitute the functional left and right lobes.

The liver performs over 500 jobs, and produces over 1,000 essential enzymes.

The functional lobes are separated by a plane joining the gallbladder fossa to the inferior vena cava. This separates the liver into the true right and left lobes. The middle hepatic vein also demarcates the true right and left lobes. The right lobe is further divided into an anterior and posterior segment by the right hepatic vein. The left lobe is divided into the medial and lateral segments by the left hepatic vein. The fissure for the ligamentum teres (the ligamentum teres becomes the falciform ligament) also separates the medial and lateral segments. The medial segment is what used to be called the quadrate lobe. The functional lobes are further divided into a total of eight subsegments based on a transverse plane through the bifurcation of the main portal vein. The caudate lobe is a separate structure which receives blood flow from both the right- and left-sided vascular branches. The subsegments corresponding to the anatomical lobes are as follows:

  • or lobe in the Caudate's case.

Each number in the list corresponds to one in the table.

  1. Caudate
  2. Superior subsegment of the lateral segment
  3. Inferior subsegment of the lateral segment
    1. Superior subsegment of the medial segment
    2. Inferior subsegment of the medial segment
  4. Inferior subsegment of the anterior segment
  5. Inferior subsegment of the posterior segment
  6. Superior subsegment of the posterior segment
  7. Superior subsegment of the anterior segment

Physiology

The various functions of the liver are carried out by the liver cells or hepatocytes.

  • The liver produces and excretes bile (a greenish liquid) required for emulsifying fats. Some of the bile drains directly into the duodenum, and some is stored in the gallbladder.
  • The liver performs several roles in carbohydrate metabolism:
    • Gluconeogenesis (the synthesis of glucose from certain amino acids, lactate or glycerol)
    • Glycogenolysis (the breakdown of glycogen into glucose) (muscle tissues can also do this)
    • Glycogenesis (the formation of glycogen from glucose)
    • The breakdown of insulin and other hormones
  • The liver is responsible for the mainstay of protein metabolism. For instance, the liver can convert lactic acid to alanine.
  • The liver also performs several roles in lipid metabolism:
    • Cholesterol synthesis
    • Lipogenesis, the production of triglycerides (fats).
  • The liver produces coagulation factors I (fibrinogen), II (prothrombin), V, VII, IX, X and XI, as well as protein C, protein S and antithrombin.
  • The liver breaks down hemoglobin, creating metabolites that are added to bile as pigment (bilirubin and biliverdin).
  • The liver breaks down toxic substances and most medicinal products in a process called drug metabolism. This sometimes results in toxication, when the metabolite is more toxic than its precursor.
  • The liver converts ammonia to urea.
  • The liver stores a multitude of substances, including glucose (in the form of glycogen), vitamin B12, iron, and copper.
  • In the first trimester fetus, the liver is the main site of red blood cell production. By the 32nd week of gestation, the bone marrow has almost completely taken over that task.
  • The liver is responsible for immunological effects- the reticuloendothelial system of the liver contains many immunologically active cells, acting as a 'sieve' for antigens carried to it via the portal system.
  • The liver produces albumin, the major osmolar component of blood serum.

Currently, there is no artificial organ or device capable of emulating all the functions of the liver. Some functions can be emulated by liver dialysis, an experimental treatment for liver failure.


Diseases of the liver

Many diseases of the liver are accompanied by jaundice caused by increased levels of bilirubin in the system. The bilirubin results from the breakup of the hemoglobin of dead red blood cells; normally, the liver removes bilirubin from the blood and excretes it through bile.

There are also many pediatric liver diseases, including biliary atresia, alpha-1 antitrypsin deficiency, alagille syndrome, progressive familial intrahepatic cholestasis, and Langerhans cell histiocytosis to name but a few.


Liver transplantation

Human liver transplant was first performed by Thomas Starzl in USA and Roy Calne in Cambridge, England in 1963 and 1965 respectively.

Liver transplantation is the only option for those with irreversible liver failure. Most transplants are done for chronic liver diseases leading to cirrhosis, such as chronic hepatitis C, alcoholism, autoimmune hepatitis, and many others. Less commonly, liver transplantation is done for fulminant hepatic failure, in which liver failure occurs over days to weeks.

Liver allografts for transplant usually come from non-living donors who have died from fatal brain injury. Living donor liver transplantation is a technique in which a portion of a living person's liver is removed and used to replace the entire liver of the recipient. This was first performed in 1989 for pediatric liver transplantation. Only 20% of an adult's liver (Couinaud segments 2 and 3) is needed to serve as a liver allograft for an infant or small child.

More recently, adult-to-adult liver transplantation has been done using the donor's right hepatic lobe which amounts to 60% of the liver. Due to the ability of the liver to regenerate, both the donor and recipient end up with normal liver function if all goes well. This procedure is more controversial as it entails performing a much larger operation on the donor, and indeed there have been at least 2 donor deaths out of the first several hundred cases. A recent publication has addressed the problem of donor mortality, and at least 14 cases have been found. The risk of postoperative complications (and death) is far greater in right sided hepatectomy than left sided operations.

With the recent advances of non-invasive imaging, living liver donors usually have to undergo imaging examinations for liver anatomy to decide if the anatomy is feasible for donation. The evaluation is usually performed by multi-detector row computed tomography (MDCT) and magnetic resonance imaging (MRI). MDCT is good in vascular anatomy and volumetry. MRI is used for biliary tree anatomy. Donors with very unusual vascular anatomy, which makes them unsuitable for donation, could be screened out to avoid unnecessary operation.


Development

Fetal blood supply

In the growing fetus, a major source of blood to the liver is the umbilical vein which supplies nutrients to the growing fetus. The umbilical vein enters the abdomen at the umbilicus, and passes upward along the free margin of the falciform ligament of the liver to the inferior surface of the liver. There it joins with the left branch of the portal vein. The ductus venosus carries blood from the left portal vein to the left hepatic vein and then to the inferior vena cava, allowing placental blood to bypass the liver.

In the fetus, the liver develops throughout normal gestation, and does not perform the normal filtration of the infant liver. The liver does not perform digestive processes because the fetus does not consume meals directly, but receives nourishment from the mother via the placenta. The fetal liver releases some blood stem cells that migrate to the fetal thymus, so initially the lymphocytes, called T-cells, are created from fetal liver stem cells. Once the fetus is delivered, the formation of blood stem cells in infants shifts to the red bone marrow.

After birth, the umbilical vein and ductus venosus are completely obliterated two to five days postpartum; the former becomes the ligamentum teres and the latter becomes the ligamentum venosum. In the disease state of cirrhosis and portal hypertension, the umbilical vein can open up again.



Liver as food

Mammal and bird livers are commonly eaten as food by humans. Animal livers are rich in iron and Vitamin A, and cod liver oil is commonly used as a dietary supplement. Very high doses of Vitamin A can be toxic. In the US, the USDA specifies 3000 μg per day as a tolerable upper limit, which amounts to about 50 g of raw pork liver, or 30-90 g of polar bear liver. However, acute vitamin A poisoning is not likely to result from liver consumption, since it is present in a less toxic form than in many dietary supplements.



Valvular heart disease

Valvular heart disease is any disease process involving one or more of the valves of the heart (the aortic and mitral valves on the left and the pulmonary and tricuspid valves on the right). Valve problems may be congenital (inborn) or acquired (due to another cause later in life). Treatment may be with medication but often (depending on the severity) involves valve repair or replacement (insertion of an artificial heart valve). Specific situations include those where additional demands are made on the circulation, such as in pregnancy.


Types

Heart valve dysplasia is an error in the development of any of the heart valves, and a common cause of congenital heart defects in humans as well as animals; tetralogy of Fallot is a congenital heart defect with four abnormalities, one of which is stenosis of the pulmonary valve. Ebstein's anomaly is an abnormality of the tricuspid valve.

Rheumatic fever was in the past a common cause of valvular heart disease (referred to as "rheumatic heart disease"). Inflammation of the heart valves due to any cause is called endocarditis; this is usually due to bacterial infection but may also be due to cancer (marantic endocarditis), certain autoimmune conditions (Libman-Sacks endocarditis) and hypereosinophilic syndrome (Loeffler endocarditis). Certain medications have been associated with valvular heart disease, most prominently ergotamine derivatives pergolide and cabergoline.

Hypertensive heart disease

Introduction

Hypertensive heart disease is any of a number of complications of arterial hypertension that affects the heart. It is one of the most common causes of death in Western Areas. It is the leading cause of death and illness in individuals with hypertension, and overall affects 7 of 1000 people.








Symptoms

  • Fatigue
  • irregular pulse
  • swelling of feet
  • dyspnea
  • weight gain
  • nausea
  • shortness of breath
  • difficulty sleeping flat in bed
  • bloating
  • greater need to urinate at night

Conditions (potential complications)

  • left ventricular hypertrophy
  • coronary heart disease
  • cardiac arryhthmias
  • congestive heart failure
  • hypertensive cardiomyopathy
  • Angina (chest pain)
  • Ischemic heart failure
  • Sudden death


Causes
  • Hypertension (high blood pressure)







Treatment

Hypertensive heart disease treatment methods may include:


Blood pressure reduction
Diet changes
Heart disease control
Medications
Reducing alcohol ingestion
Reducing salt ingestion
Regular blood pressure checks
Quitting smoking
Weight loss

Ischaemic Heart Disease












Introduction

Ischemic heart disease (IHD), is a disease characterized by reduced blood supply to the heart muscle, usually due to coronary artery disease (atherosclerosis of the coronary arteries). Its risk increases with age, smoking, hypercholesterolaemia (high cholesterol levels), diabetes, hypertension (high blood pressure) and is more common in men and those who have close relatives with ischaemic heart disease.

Symptoms of stable ischaemic heart disease include angina (characteristic chest pain on exertion) and decreased exercise tolerance. Unstable IHD presents itself as chest pain or other symptoms at rest, or rapidly worsening angina. Diagnosis of IHD is with an electrocardiogram, blood tests, cardiac stress testing or a coronary angiogram. Depending on the symptoms and risk, treatment may be with medication, percutaneous coronary intervention (angioplasty) or coronary artery bypass surgery (CABG).

It is the most common cause of death in most countries, and a major cause of hospital admissions.


Signs and symptoms

Ischaemic heart disease may present with any of the following problems:

  • Angina pectoris (chest pain on exertion, in cold weather or emotional situations)
  • Acute chest pain: acute coronary syndrome, unstable angina or myocardial infarction ("heart attack", severe chest pain unrelieved by rest associated with evidence of acute heart damage)
  • Heart failure (dif
  • ficulty in breathing or swelling of the extremities due to weakness of the heart muscle)

The medical history distinguishes between various alternative causes for chest pain (such as dyspepsia, musculoskeletal pain, pulmonary embolism). As part of an assessment of the three main presentations of IHD, risk factors are addressed. These are the main causes of atherosclerosis (the disease process underlying IHD): age, male sex, hyperlipidaemia (high cholesterol and high fats in the blood), smoking, hypertension (high blood pressure), diabetes, and the family history.








Diagnosis

The diagnosis of ischemic heart disease underlying particular symptoms depends largely on the nature of the symptoms. The first investigation is an electrocardiogram (ECG/EKG), both for "stable" angina and acute coronary syndrome. An X-ray of the chest and blood tests may be performed.


Stable angina

In "stable" angina, chest pain with typical features occurring at predictable levels of exertion, various forms of cardiac stress tests may be used to induce both symptoms and detect changes by way of electrocardiography (using an ECG), echocardiography (using ultrasound of the heart) or scintigraphy (using uptake of radionuclide by the heart muscle). If part of the heart seems to receive an insufficient blood supply, coronary angiography may be used to identify stenosis of the coronary arteries and suitability for angioplasty or bypass surgery.

Acute chest pain

Diagnosis of acute coronary syndrome generally takes places in the emergency department, where ECGs may be performed sequentially to identify "evolving changes" (indicating ongoing damage to the heart muscle). Diagnosis is clear-cut if ECGs show elevation of the "ST segment", which in the context of severe typical chest pain is strongly indicative of an acute myocardial infarction (MI); this is termed a STEMI (ST-elevation MI), and is treated as an emergency with either urgent coronary angiography and percutaneous coronary intervention (angioplasty with or without stent insertion) or with thrombolysis ("clot buster" medication). In the absence of ST-segment elevation, heart damage is detected by cardiac markers (blood tests that identify heart muscle damage). If there is evidence of damage (infarction), the chest pain is attributed to a "non-ST elevation MI" (NSTEMI). If there is no evidence of damage, the term "unstable angina" is used. This process usually necessitates admission to hospital, and close observation on a coronary care unit for possible complications (such as cardiac arrhythmias - irregularities in the heart rate).

Depending on the risk assessment, stress testing or angiography may be used to identify and treat coronary artery disease in patients who have had an NSTEMI or unstable angina.

Heart failure

In patients with heart failure, stress testing or coronary angiography may be performed to identify and treat underlying coronary artery disease.









Pathogenesis

The disease process underlying most ischemic heart disease is atherosclerosis of the coronary arteries. The arteries become "furred up" by fat-rich deposits in the vessel wall (plaques).

Stable angina is due to inability to supply the myocardium (heart muscle) with sufficient blood in situations of increased demand for oxygen, such as exertion.

Unstable angina, STEMI and NSTEMI are attributed to "plaque rupture", where one of the plaques gets weakened, develops a tear, and forms an adherent blood clot that either obstructs blood flow or floats down further the blood vessel, causing obstruction further down.


Treatment

In stable IHD, antianginal drugs may be used to reduce the rate of occurrence and severity of angina attacks. Treatments for acute coronary syndrome and established coronary artery disease is discussed above in "diagnosis".

Treatment of coronary artery disease includes addressing "modifiable" risk factors. This includes suppression of cholesterol (usually with statins), even in those with statistically normal cholesterol levels, control of blood pressure, blood sugars (if diabetic), regular exercise and a healthy diet. Smokers are encouraged to stop smoking.











Prevention

Various treatments are offered in people deemed to be at high risk of coronary artery disease. These include control of cholesterol levels in those with known high cholesterol, smoking cessation, and control of high blood pressure.


Heart Failure

What is heart failure?

Heart failure is a cardiac condition, that occurs when a problem with the structure or function of the heart impairs its ability to supply sufficient blood flow to meet the body's needs.

Heart failure should not be confused with cardiac arrest. It can cause a large variety of symptoms (chiefly shortness of breath and ankle swelling) but some patients can be completely symptom free. Heart failure is often undiagnosed due to a lack of a universally agreed definition and challenges in definitive diagnosis, particularly in early stage. With appropriate therapy, heart failure can be managed in the majority of patients, but it is a potentially life threatening condition, and progressive disease is associated with an annual mortality of 10%. It is the leading cause of hospitalization in people older than 65.


Terminology

Heart failure is a global term for the physiological state in which cardiac output is insufficient for the body's needs.

This may occur when the cardiac output is low (often termed "congestive heart failure").

In contrast, it may also occur when the body's requirements are increased, and demand outstrips what the heart can provide, (termed "high output cardiac failure"). This can occur in the context of severe anemia, beriberi, thyrotoxicosis, Paget's disease, arteriovenous fistulae or arteriovenous malformations.

Fluid overload is a common problem for people with heart failure, but is not synonymous with it. Patients with treated heart failure will often be euvolaemic (a term for normal fluid status), or more rarely, dehydrated.

Doctors use the word "acute" to mean of rapid onset, and "chronic" of long duration. Chronic heart failure is therefore a long term situation, usually with stable treated symptomatology. Acute Heart failure, which should just describe sudden onset HF, is also used to describe exacerbated or decompensated heart failure, referring to episodes in which a patient with known chronic heart failure abruptly develops symptoms.

There are several terms which are closely related to heart failure, and may be the cause of heart failure, but should not be confused with it:

  • Cardiac arrest, and asystole both refer to situations in which there is no cardiac output at all. Without urgent treatment, these result in sudden death.
  • Heart attack refers to a blockage in a coronary (heart) artery resulting in heart muscle damage.
  • Cardiomyopathy refers specifically to problems within the heart muscle, and these problems usually result in heart failure. Ischemic cardiomyopathy implies that the cause of muscle damage is coronary artery disease. Dilated cardiomyopathy implies that the muscle damage has resulted in enlargement of the heart. Hypertrophic cardiomyopathy involves enlargement and thickening of the heart muscle.


Classification

There are many different ways to categorize heart failure, including:

  • the side of the heart involved, (left heart failure versus right heart failure)
  • whether the abnormality is due to contraction or relaxation of the heart (systolic dysfunction vs. diastolic dysfunction)
  • whether the problem is primarily increased venous back pressure (behind) the heart, or failure to supply adequate arterial perfusion (in front of) the heart (backward vs. forward failure)
  • whether the abnormality is due to low cardiac output with high systemic vascular resistance or high cardiac output with low vascular resistance (low-output heart failure vs. high-output heart failure)
  • the degree of functional impairment conferred by the abnormality (as in the NYHA functional classification)

Functional classification generally relies on the New York Heart Association Functional Classification. The classes (I-IV) are:

  • Class I: no limitation is experienced in any activities; there are no symptoms from ordinary activities.
  • Class II: slight, mild limitation of activity; the patient is comfortable at rest or with mild exertion.
  • Class III: marked limitation of any activity; the patient is comfortable only at rest.
  • Class IV: any physical activity brings on discomfort and symptoms occur at rest.

This score documents severity of symptoms, and can be used to assess response to treatment. While its use is widespread, the NYHA score is not very reproducible and doesn't reliably predict the walking distance or exercise tolerance on formal testing.

In its 2001 guidelines, the American College of Cardiology/American Heart Association working group introduced four stages of heart failure:

  • Stage A: Patients at high risk for developing HF in the future but no functional or structural heart disorder;
  • Stage B: a structural heart disorder but no symptoms at any stage;
  • Stage C: previous or current symptoms of heart failure in the context of an underlying structural heart problem, but managed with medical treatment;
  • Stage D: advanced disease requiring hospital-based support, a heart transplant or palliative care.

The ACC staging system is useful in that Stage A encompasses "pre-heart failure" - a stage where intervention with treatment can presumably prevent progression to overt symptoms.



Diagnostic criteria

No system of diagnostic criteria has been agreed as the gold standard for heart failure. Commonly used systems are the "Framingham criteria" (derived from the Framingham Heart Study), the "Boston criteria", the "Duke criteria", and (in the setting of acute myocardial infarction) the "Killip class".


Signs and symptoms

Symptoms

Heart failure symptoms are traditionally and somewhat arbitrarily divided into "left" and "right" sided, recognising that the left and right ventricles of the heart supply different portions of the circulation. This division erroneously implies that the manifestation of failure is predominantly "backward" - with increased venous pressure in the pulmonary circulation for "left" heart failure, and in the systemic circulation for "right" heart failure.

Left sided forward failure overlaps with right sided backward failure. Additionally, the most common cause of right-sided heart failure is left-sided heart failure. The result is that patients commonly present with both sets of signs and symptoms.

Left-sided failure

Backward failure of the left ventricle causes congestion of the pulmonary vasculature, and so the symptoms are predominantly respiratory in nature. The patient will have dyspnea (shortness of breath) on exertion and in severe cases, dyspnea at rest. Increasing breathlessness on reclining, called orthopnea, occurs. It is often measured in the number of pillows required to lie comfortably, and in severe cases, the patient may resort to sleeping while sitting up. Another symptom of heart failure is paroxysmal nocturnal dyspnea, a sudden nighttime attack of severe breathlessness, usually several hours after going to sleep. Easy fatigueability and exercise intolerance are also common complaints related to respiratory compromise.

Compromise of left ventricular forward function may result in symptoms of poor systemic circulation such as dizziness, confusion and cool extremities at rest.

Right-sided failure

Backward failure of the right ventricle leads to congestion of systemic capillaries. This helps to generate excess fluid accumulation in the body. This causes swelling under the skin and usually affects the dependent parts of the body first (causing foot and ankle swelling in people who are standing up, and sacral edema in people who are predominantly lying down). Nocturia (frequent nighttime urination) may occur when fluid from the legs is returned to the bloodstream while lying down at night. In progressively severe cases, ascites (fluid accumulation in the abdominal cavity causing swelling) and hepatomegaly (painful enlargement of the liver) may develop. Significant liver congestion may result in impaired liver function, and jaundice and even coagulopathy (problems of decreased blood clotting) may occur.

Signs

Left-sided failure

Common respiratory signs are tachypnea (increased rate of breathing) and increased work of breathing (non-specific signs of respiratory distress). Rales or crackles, heard initially in the lung bases, and when severe, throughout the lung fields suggest the development of pulmonary edema (fluid in the alveoli). Dullness of the lung fields to finger percussion and reduced breath sounds at the bases of the lung may suggest the development of a pleural effusion (fluid collection in between the lung and the chest wall). Cyanosis which suggests severe hypoxemia, is a late sign of extremely severe pulmonary edema.

Additional signs indicating left ventricular failure include a laterally displaced apex beat (which occurs if the heart is enlarged) and a gallop rhythm (additional heart sounds) may be heard as a marker of increased blood flow, or increased intra-cardiac pressure. Heart murmurs may indicate the presence of valvular heart disease, either as a cause (e.g. aortic stenosis) or as a result (e.g. mitral regurgitation) of the heart failure.

Right-sided failure

Physical examination can reveal pitting peripheral edema, ascites, and hepatomegaly. Jugular venous pressure is frequently assessed as a marker of fluid status, which can be accentuated by the hepatojugular reflux. If the right ventriclar pressure is increased, a parasternal heave may be present, signifying the compensatory increase in contraction strength.


Causes

Chronic Heart Failure

The predominance of causes of heart failure are difficult to analyse due to challenges in diagnosis, differences in populations, and changing prevalence of causes with age.

A 19 year study of 13000 healthy adults in the United States found the following causes ranked by Population Attributable Risk score:

  1. Ischaemic Heart Disease 62%
  2. Cigarette Smoking 16%
  3. Hypertension (high blood pressure)10%
  4. Obesity 8%
  5. Diabetes 3%
  6. Valvular Heart Disease 2% (much higher in older populations)

An Italian registry of over 6200 patients with heart failure showed the following underlying causes:

  1. Ischaemic Heart Disease 40%
  2. Dilated Cardiomyopathy 32%
  3. Valvular Heart Disease 12%
  4. Hypertension 11%
  5. Other 5%

Rarer causes of heart failure include:

  • Viral Myocarditis (an infection of the heart muscle)
  • Infiltrations of the muscle such as amyloidosis
  • HIV cardiomyopathy (caused by Human Immunodeficiency Virus)
  • Connective Tissue Diseases such as Systemic lupus erythematosus
  • Drugs of abuse such as alcohol
  • Pharmaceutical drugs such as chemotherapeutic agents.
  • Arrhythmias

Obstructive Sleep Apnea a condition of sleep disordered breathing overlaps with obesity, hypertension and diabetes and is regarded as an independent cause of heart failure.

Acute Decompensation of Heart Failure

Chronic stable heart failure may easily decompensate. This most commonly results from an intercurrent illness (such as pneumonia), myocardial infarction (a heart attack), arrhythmias, uncontrolled hypertension, or a patient's failure to maintain a fluid restriction, diet or medication. Other well recognised precipitating factors include anaemia and hyperthyroidism which place additional strain on the heart muscle. Excessive fluid or salt intake, and medication that causes fluid retention such as NSAIDs and thiazolidinediones, may also precipitate decompensation.


Pathophysiology

Heart failure is caused by any condition which reduces the efficiency of the myocardium, or heart muscle, through damage or overloading. As such, it can be caused by as diverse an array of conditions as myocardial infarction (in which the heart muscle is starved of oxygen and dies), hypertension (which increases the force of contraction needed to pump blood) and amyloidosis (in which protein is deposited in the heart muscle, causing it to stiffen). Over time these increases in workload will produce changes to the heart itself:

  • Reduced contractility, or force of contraction, due to overloading of the ventricle. In health, increased filling of the ventricle results in increased contractility (by the Frank-Starling law of the heart) and thus a rise in cardiac output. In heart failure this mechanism fails, as the ventricle is loaded with blood to the point where heart muscle contraction becomes less efficient. This is due to reduced ability to cross-link actin and myosin filaments in over-stretched heart muscle.
  • A reduced stroke volume, as a result of a failure of systole, diastole or both. Increased end systolic volume is usually caused by reduced contractility. Decreased end diastolic volume results from impaired ventricular filling – as occurs when the compliance of the ventricle falls (i.e. when the walls stiffen).
  • Reduced spare capacity. As the heart works harder to meet normal metabolic demands, the amount cardiac output can increase in times of increased oxygen demand (e.g. exercise) is reduced. This contributes to the exercise intolerance commonly seen in heart failure.
  • Increased heart rate, stimulated by increased sympathetic activity in order to maintain cardiac output. Initially, this helps compensate for heart failure by maintaining blood pressure and perfusion, but places further strain on the myocardium, increasing coronary perfusion requirements, which can lead to worsening of ischemic heart disease. Sympathetic activity may also cause potentially fatal arrhythmias.
  • Hypertrophy (an increase in physical size) of the myocardium, caused by the terminally differentiated heart muscle fibres increasing in size in an attempt to improve contractility. This may contribute to the increased stiffness and decreased ability to relax during diastole.
  • Enlargement of the ventricles, contributing to the enlargement and spherical shape of the failing heart. The increase in ventricular volume also causes a reduction in stroke volume due to mechanical and contractile inefficiency.

The general effect is one of reduced cardiac output and increased strain on the heart. This increases the risk of cardiac arrest (specifically due to ventricular dysrhythmias), and reduces blood supply to the rest of the body. In chronic disease the reduced cardiac output causes a number of changes in the rest of the body, some of which are physiological compensations, some of which are part of the disease process:

  • Arterial blood pressure falls. This destimulates baroreceptors in the carotid body and aortic arch which link to the nucleus tractus solitarius. This center in the brain increases sympathetic activity, releasing catecholamines into the blood stream. Binding to alpha-1 receptors results in systemic arterial vasoconstriction. This helps restore blood pressure but also increases the total peripheral resistance, increasing the workload of the heart. Binding to beta-1 receptors in the myocardium increases the heart rate and make contractions more forceful, in an attempt to increase cardiac output. This also, however, increases the amount of work the heart has to perform.
  • Increased sympathetic stimulation also causes the hypothalamus to secrete vasopressin (also known as antidiuretic hormone or ADH), which causes fluid retention at the kidneys. This increases the blood volume and blood pressure.
  • Reduced perfusion (blood flow) to the kidneys stimulates the release of renin – an enzyme which catalyses the production of the potent vasopressor angiotensin. Angiotensin and its metabolites cause further vasocontriction, and stimulate increased secretion of the steroid aldosterone from the adrenal glands. This promotes salt and fluid retention at the kidneys, also increasing the blood volume.
  • The chronically high levels of circulating neuroendocrine hormones such as catecholamines, renin, angiotensin, and aldosterone affects the myocardium directly, causing structural remodelling of the heart over the long term. Many of these remodelling effects seem to be mediated by transforming growth factor beta (TGF-beta), which is a common downstream target of the signal transduction cascade initiated by catecholamines and angiotensin II, and also by epidermal growth factor (EGF), which is a target of the signaling pathway activated by aldosterone
  • Reduced perfusion of skeletal muscle causes atrophy of the muscle fibres. This can result in weakness, increased fatigueability and decreased peak strength - all contributing to exercise intolerance.

The increased peripheral resistance and greater blood volume place further strain on the heart and accelerates the process of damage to the myocardium. Vasoconstriction and fluid retention produce an increased hydrostatic pressure in the capillaries. This shifts of the balance of forces in favour of interstitial fluid formation as the increased pressure forces additional fluid out of the blood, into the tissue. This results in edema (fluid build-up) in the tissues. In right-sided heart failure this commonly starts in the ankles where venous pressure is high due to the effects of gravity (although if the patient is bed-ridden, fluid accumulation may begin in the sacral region.) It may also occur in the abdominal cavity, where the fluid build-up is called ascites. In left-sided heart failure edema can occur in the lungs - this is called cardiogenic pulmonary oedema. This reduces spare capacity for ventilation, causes stiffening of the lungs and reduces the efficiency of gas exchange by increasing the distance between the air and the blood. The consequences of this are shortness of breath, orthopnoea and paroxysmal nocturnal dyspnea.

The symptoms of heart failure are largely determined by which side of the heart fails. The left side pumps blood into the systemic circulation, whilst the right side pumps blood into the pulmonary circulation. Whilst left-sided heart failure will reduce cardiac output to the systemic circultion, the initial symptoms often manifest due to effects on the pulmonary circulation. In systolic dysfunction, the ejection fraction is decreased, leaving an abnormally elevated volume of blood in the left ventricle. In diastolic dysfunction, end-diastolic ventricular pressure will be high. This increase in volume or pressure backs up to the left atrium and then to the pulmonary veins. Increased volume or pressure in the pulmonary veins impairs the normal drainage of the alveoli and favors the flow of fluid from the capillaries to the lung parenchyma, causing pulmonary edema. This impairs gas exchange. Thus, left-sided heart failure often presents with respiratory symptoms: shortness of breath, orthopnea and paroxysmal nocturnal dyspnea.

In severe cardiomyopathy, the effects of decreased cardiac output and poor perfusion become more apparent, and patients will manifest with cold and clammy extremities, cyanosis, claudication, generalized weakness, dizziness, and syncope.

The resultant hypoxia caused by pulmonary edema causes vasoconstriction in the pulmonary circulation, which results in pulmonary hypertension. Since the right ventricle generates far lower pressures than the left ventricle but nonetheless generates cardiac output exactly equal to the left ventricle, this means that a small increase in pulmonary vascular resistance causes a large increase in amount of work the right ventricle must perform. However, the main mechanism by which left-sided heart failure causes right-sided heart failure is actually not well understood. Some theories invoke mechanisms that are mediated by neurohormonal activation. Mechanical effects may also contribute. As the left ventricle distends, the intraventricular septum bows into the right ventricle, decreasing the capacity of the right ventricle.

Systolic dysfunction

Heart failure caused by systolic dysfunction is more readily recognized. It can be simplistically described as failure of the pump function of the heart. It is characterized by a decreased ejection fraction (less than 45%). The strength of ventricular contraction is attenuated and inadequate for creating an adequate stroke volume, resulting in inadequate cardiac output. In general, this is caused by dysfunction or destruction of cardiac myocytes or their molecular components. In congenital diseases such as Duchenne muscular dystrophy, the molecular structure of individual myocytes is affected. Myocytes and their components can be damaged by inflammation (such as in myocarditis) or by infiltration (such as in amyloidosis). Toxins and pharmacological agents (such as ethanol, cocaine, and amphetamines) cause intracellular damage and oxidative stress. The most common mechanism of damage is ischemia causing infarction and scar formation. After myocardial infarction, dead myocytes are replaced by scar tissue, deleteriously affecting the function of the myocardium. On echocardiogram, this is manifest by abnormal or absent wall motion.

Because the ventricle is inadequately emptied, ventricular end-diastolic pressure and volumes increase. This is transmitted to the atrium. On the left side of the heart, the increased pressure is transmitted to the pulmonary vasculature, and the resultant hydrostatic pressure favors extravassation of fluid into the lung parenchyma, causing pulmonary edema. On the right side of the heart, the increased pressure is transmitted to the systemic venous circulation and systemic capillary beds, favoring extravassation of fluid into the tissues of target organs and extremities, resulting in dependent peripheral edema.

Diastolic dysfunction

Heart failure caused by diastolic dysfunction is generally described as the failure of the ventricle to adequately relax and typically denotes a stiffer ventricular wall. This causes inadequate filling of the ventricle, and therefore results in an inadequate stroke volume. The failure of ventricular relaxation also results in elevated end-diastolic pressures, and the end result is identical to the case of systolic dysfunction (pulmonary edema in left heart failure, peripheral edema in right heart failure.)

Diastolic dysfunction can be caused by processes similar to those that cause systolic dysfunction, particularly causes that affect cardiac remodeling.

Diastolic dysfunction may not manifest itself except in physiologic extremes if systolic function is preserved. The patient may be completely asymptomatic at rest. However, they are exquisitely sensitive to increases in heart rate, and sudden bouts of tachycardia (which can be caused simply by physiological responses to exertion, fever, or dehydration, or by pathological tachyarrhythmias such as atrial fibrillation with rapid ventricular response) may result in flash pulmonary edema. Adequate rate control (usually with a pharmacological agent that slows down AV conduction such as a calcium channel blocker or a beta-blocker) is therefore key to preventing decompensation.

Left ventricular diastolic function can be determined through echocardiography by measurement of various parameters such as the E/A ratio (early-to-atrial left ventricular filling ratio), the E (early left ventricular filling) deceleration time, and the isovolumic relaxation time.


Diagnosis

Chest x-ray showing an enlarged cardiac silhouette due to congestive heart failure.

(Chest x-ray showing an enlarged cardiac silhouette due to congestive heart failure)

Imaging

Echocardiography is commonly used to support a clinical diagnosis of heart failure. This modality uses ultrasound to determine the stroke volume (SV, the amount of blood in the heart that exits the ventricles with each beat), the end-diastolic volume (EDV, the total amount of blood at the end of diastole), and the SV in proportion to the EDV, a value known as the ejection fraction. In pediatrics, the shortening fraction is the preferred measure of systolic function. Normally, the EF should be between 50% and 70%; in systolic heart failure, it drops below 40%. Echocardiography can also identify valvular heart disease and assess the state of the pericardium (the connective tissue sac surrounding the heart). Echocardiography may also aid in deciding what treatments will help the patient, such as medication, insertion of an implantable cardioverter-defibrillator or cardiac resynchronization therapy. Echocardiography can also help determine if acute myocardial ischemia is the precipitating cause, and may manifest as regional wall motion abnormalities on echo.

Chest X-rays are frequently used to aid in the diagnosis of CHF. In the compensated patient, this may show cardiomegaly (visible enlargement of the heart), quantified as the cardiothoracic ratio (proportion of the heart size to the chest). In left ventricular failure, there may be evidence of vascular redistribution ("upper lobe blood diversion" or "cephalization"), Kerley lines, cuffing of the areas around the bronchi, and interstitial edema.

Electrophysiology

An electrocardiogram (ECG/EKG) is used to identify arrhythmias, ischemic heart disease, right and left ventricular hypertrophy, and presence of conduction delay or abnormalities (e.g. left bundle branch block). An ECG may also diagnose acute myocardial ischemia or infarction (if ST depression or elevation are present).

Blood tests

Blood tests routinely performed include electrolytes (sodium, potassium), measures of renal function, liver function tests, thyroid function tests, a complete blood count, and often C-reactive protein if infection is suspected. An elevated B-type natriuretic peptide (BNP) is a specific test indicative of heart failure. Additionally, BNP can be used to differentiate between causes of dyspnea due to heart failure from other causes of dyspnea. If myocardial infarction is suspected, various cardiac markers may be used.

According to a meta-analysis comparing BNP and N-terminal pro-BNP in the diagnosis of heart failure, BNP is a better indicator for heart failure and left ventricular systolic dysfunction. In groups of symptomatic patients, a diagnostic odds ratio of 27 for BNP compares with a sensitivity of 85% and specificity of 84% in detecting heart failure.

Angiography

Heart failure may be the result of coronary artery disease, and its prognosis depends in part on the ability of the coronary arteries to supply blood to the myocardium (heart muscle). As a result, coronary catheterization may be used to identify possibilities for revascularisation through percutaneous coronary intervention or bypass surgery.

Monitoring

Various measures are often used to assess the progress of patients being treated for heart failure. These include fluid balance (calculation of fluid intake and excretion), monitoring body weight (which in the shorter term reflects fluid shifts).


Treatment

Treatment focuses on improving the symptoms and preventing the progression of the disease. Reversible causes of the heart failure also need to be addressed: (e.g. infection, alcohol ingestion, anemia, thyrotoxicosis, arrhythmia, hypertension). Treatments include lifestyle and pharmacological modalities.


Modalities

Diet and lifestyle measures

Patients with CHF are educated to undertake various non-pharmacological measures to improve symptoms and prognosis. Such measures include:

  • Moderate physical activity, when symptoms are mild or moderate; or bed rest when symptoms are severe.
  • If sleep apnea is identified, treat with CPAP, BiPAP, dental appliances or surgery. Sleep apnea is an under recognized risk factor for heart failure
  • Weight reduction – through physical activity and dietary modification, as obesity is a risk factor for heart failure and left ventricular hypertrophy.
  • Monitor weight - this is a parameter that can easily be measured at home. Rapid weight increase is generally due to fluid retention. Weight gain of more than 2 pounds is associated with admission to the hospital for heart failure
  • Sodium restriction – excessive sodium intake may precipitate or exacerbate heart failure, thus a "no added salt" diet (60–100 mmol total daily intake) is recommended for patients with CHF. More severe restrictions may be required in severe CHF.
  • Fluid restriction – patients with CHF have a diminished ability to excrete free water load. Hyponatremia frequently develops in decompensated heart failure due to the effects of excess circulating neuroendocrine hormones. While the activation of the renin-angiotensin-aldosterone axis due to decreased renal perfusion promotes both sodium and water retention, the activation of atrial natriuretic peptide due to atrial stretch favors sodium excretion, and the activation of antidiuretic hormone due to peripheral baroreceptors that sense hypotension as well as due to the activation of the sympathetic nervous system favors water retention alone, leading to disproportionately more water retention than sodium retention. The severity of the hyponatremia during an episode of decompensated heart failure can be predictive of mortality. Generally water intake should be limited to 1.5 L daily or less in patients with hyponatremia, though fluid restriction may be beneficial regardless in symptomatic reduction.

Pharmacological management

There is a significant evidence–practice gap in the treatment of CHF; particularly the underuse of ACE inhibitors and β-blockers and aldosterone antagonists which have been shown to provide mortality benefit. Treatment of CHF aims to relieve symptoms, to maintain a euvolemic state (normal fluid level in the circulatory system), and to improve prognosis by delaying progression of heart failure and reducing cardiovascular risk. Drugs used include: diuretic agents, vasodilator agents, positive inotropes, ACE inhibitors, beta blockers, and aldosterone antagonists (e.g. spironolactone). Some drugs which increase heart function, such as the positive inotrope Milrinone, lead to increased mortality, and are contraindicated.

Angiotensin-modulating agents

ACE inhibitor (ACE) therapy is recommended for all patients with systolic heart failure, irrespective of symptomatic severity or blood pressure. ACE inhibitors improve symptoms, decrease mortality and reduce ventricular hypertrophy. Angiotensin II receptor antagonist therapy (also referred to as AT1-antagonists or angiotensin receptor blockers), particularly using candesartan, is an acceptable alternative if the patient is unable to tolerate ACEI therapy. ACEIs and ARBs decrease afterload by antagonizing the vasopressor effect of angiotensin, thereby decreasing the amount of work the heart must perform. It is also believed that angiotensin directly affects cardiac remodeling, and blocking its activity can thereby slow the deterioration of cardiac function.

Diuretics

Diuretic therapy is indicated for relief of congestive symptoms. Several classes are used, with combinations reserved for severe heart failure:

  • Loop diuretics (e.g. furosemide, bumetanide) – most commonly used class in CHF, usually for moderate CHF.
  • Thiazide diuretics (e.g. hydrochlorothiazide, chlorthalidone, chlorthiazide) – may be useful for mild CHF, but typically used in severe CHF in combination with loop diuretics, resulting in a synergistic effect.
  • Potassium-sparing diuretics (e.g. amiloride) – used first-line use to correct hypokalaemia.
    • Spironolactone is used as add-on therapy to ACEI plus loop diuretic in severe CHF.
    • Eplerenone is specifically indicated for post-MI reduction of cardiovascular risk.

If a heart failure patient exhibits a resistance to or poor response to diuretic therapy, ultrafiltration or aquapheresis may be needed to achieve adequate control of fluid retention and congestion. The use of such mechanical methods of fluid removal can produce meaningful clinical benefits in patients with diuretic-resistant heart failure and may restore responsiveness to conventional doses of diuretics.

Beta blockers

Until recently (within the last 20 years), β-blockers were contraindicated in CHF, owing to their negative inotropic effect and ability to produce bradycardia – effects which worsen heart failure. However, current guidelines recommend β-blocker therapy for patients with systolic heart failure due to left ventricular systolic dysfunction after stabilization with diuretic and ACEI therapy, irrespective of symptomatic severity or blood pressure. As with ACEI therapy, the addition of a β-blocker can decrease mortality and improve left ventricular function. Several β-blockers are specifically indicated for CHF including: bisoprolol, carvedilol, and extended-release metoprolol. The antagonism of β1 inotropic and chronotropic effects decreases the amount of work the heart must perform. It is also thought that catecholamines and other sympathomimetics have an effect on cardiac remodeling, and blocking their activity can slow the deterioration of cardiac function.

Positive inotropes

Digoxin (a mildly positive inotrope and negative chronotrope), once used as first-line therapy, is now reserved for control of ventricular rhythm in patients with atrial fibrillation; or where adequate control is not achieved with an ACEI, a beta blocker and a loop diuretic. There is no evidence that digoxin reduces mortality in CHF, although some studies suggest a decreased rate in hospital admissions. It is contraindicated in cardiac tamponade and restrictive cardiomyopathy.

The inotropic agent dobutamine is advised only in the short-term use of acutely decompensated heart failure, and has no other uses.

Phosphodiesterase inhibitors such as milrinone are sometimes utilized in severe cardiomyopathy. The mechanism of action is through the antagonism of adenosine receptors, resulting in inotropic effects and modest diuretic effects.

Alternative vasodilators

The combination of isosorbide dinitrate/hydralazine is the only vasodilator regimen, other than ACE inhibitors or angiotensin II receptor antagonists, with proven survival benefits. This combination appears to be particularly beneficial in CHF patients with an African American background, who respond less effectively to ACEI therapy.

Aldosterone receptor antagonists

The RALES trial showed that the addition of spironolactone can improve mortality, particularly in severe cardiomyopathy (ejection fraction less than 25%.) The related drug eplerenone was shown in the EPHESUS trial to have a similar effect, and it is specifically labelled for use in decompensated heart failure complicating acute myocardial infarction. While the antagonism of aldosterone will decrease the effects of sodium and water retention, it is thought that the main mechanism of action is by antagonizing the deleterious effects of aldosterone on cardiac remodeling.

Recombinant neuroendocrine hormones

Nesiritide, a recombinant form of B-natriuretic peptide, is indicated for use in patients with acute decompensated heart failure who have dyspnea at rest. Nesiritide promotes diuresis and natriuresis, thereby ameliorating volume overload. It is thought that, while BNP is elevated in heart failure, the peptide that is produced is actually dysfunctional or non-functional and thereby ineffective.

Vasopressin receptor antagonists

Tolvaptan and conivaptan antagonize the effects of antidiuretic hormone (vasopressin), thereby promoting the specific excretion of free water, directly ameliorating the volume overloaded state, and counteracting the hyponatremia that occurs due to the release of neuroendocrine hormones in an attempt to counteract the effects of heart failure. The EVEREST trial, which utilized tolvaptan, showed that when used in combination with conventional therapy, many symptoms of acute decompensated heart failure were significantly improved compared to conventional therapy alone although they found no difference in mortality and morbidity when compared to conventional therapy.

Devices

Patients with NYHA class III or IV, left ventricular ejection fraction (LVEF) of 35% or less and a QRS interval of 120 ms or more may benefit from cardiac resynchronization therapy (CRT; pacing both the left and right ventricles), through implantation of a bi-ventricular pacemaker, or surgical remodeling of the heart. These treatment modalities may make the patient symptomatically better, improving quality of life and in some trials have been proven to reduce mortality.

The COMPANION trial demonstrated that CRT improved survival in individuals with NYHA class III or IV heart failure with a widened QRS complex on an electrocardiogram. The CARE-HF trial showed that patients receiving CRT and optimal medical therapy benefited from a 36% reduction in all cause mortality, and a reduction in cardiovascular-related hospitalization.

Patients with NYHA class II, III or IV, and LVEF of 35% (without a QRS requirement) may also benefit from an implantable cardioverter-defibrillator (ICD), a device that is proven to reduce all cause mortality by 23% compared to placebo in patients who were already optimally managed on drug therapy. Patients with severe cardiomyopathy are at high risk for sudden cardiac death due to ventricular dysrhythmias. Although ICDs deliver electrical shocks to resynchronize heart rhythm which are potentially destressing to the patient, they have not been shown to affect quality of life. The number of (appropriate and inappropriate) shocks seems to be associated to a worse outcome.Although they are expensive, ICDs are potentially cost-effective in this setting.

Another current treatment involves the use of left ventricular assist devices (LVADs). LVADs are battery-operated mechanical pump-type devices that are surgically implanted on the upper part of the abdomen. They take blood from the left ventricle and pump it through the aorta. LVADs are becoming more common and are often used by patients who have to wait for heart transplants.

Surgery

The final option, if other measures have failed, is heart transplantation or (temporary or prolonged) implantation of an artificial heart. These remain the recommended surgical treatment options. However, the limited number of hearts available for transplantation in a growing group of candidates, has led to the development of alternative surgical approaches to heart failure. These commonly involve surgical left ventricular remodeling. The aim of the procedures is to reduce the ventricle diameter (targeting Laplace's law and the disease mechanism of heart failure), improve its shape and/or remove non-viable tissue. These procedures can be performed together with coronary artery bypass surgery or mitral valve repair.

If heart failure ensues after a myocardial infarction due to scarring and aneurysm formation, reconstructive surgery may be an option. These aneurysms bulge with every contraction, making it inefficient. Cooley and coworkers reported the first surgical treatment of a left ventricular aneurysm in 1958. The used a linear closure after their excision. In the 1980s, Vincent Dor developed a method using an circular patch stitched to the inside of the ventricle to close the defect after excision. His approach has been modified by others. Today, this is the preferred method for surgical treatment of incorrectly contracting (dyskinetic) left ventricle tissue, although a linear closure technique combined with septoplasty might be equally effective. The multicenter RESTORE trial of 1198 participants demonstrated an increase in ejection fraction from about 30% to 40% with a concomitant shift in NYHA classes, with an early mortality of 5% and a 5-year survival of 70%. As of yet, it remains unknown if surgery is superior to optimal medical therapy. The STICH trial (Surgical Treatment for IschemiC Heart Failure) will examine the role of medical treatment, coronary artery bypass surgery and left ventricle remodeling surgery in heart failure patients. Results are expected to be published in 2009 and 2011.

The Batista procedure was invented by Brazilian doctor Randas Batista in 1994 for use in patients with non-ischemic dilated cardiomyopathy. It involves removal of a portion of viable tissue from the left ventricle to reduce its size (partial left ventriculectomy), with or without repair or replacement of the mitral valve. Although several studies showed benefits from this surgery, studies at the Cleveland Clinic concluded that this procedure was associated with a high early and late failure rate. At 3 years only 26 percent were event-free and survival rate was only 60 percent. Most hospitals have abandoned this operation and it is no longer included in heart failure guidelines.

Newer procedures under examination are based on the observation that the spherical configuration of the dilated heart reduces ejection fraction compared to the elliptical form. Mesh-like constraint devices such as the Acorn CorCap aim to improve contraction efficacy and prevent further remodeling. Clinical trials are underway. Another technique which aims to divide the spherical ventricle into two elliptical halves is used with the Myosplint device.


Approach

Acute decompensation

In acute decompensated heart failure, the immediate goal is to re-establish adequate perfusion and oxygen delivery to end organs. This entails ensuring that airway, breathing, and circulation are secure.

Supplemental oxygen should be administered if hypoxemia is present. It should not however be routinely used. Continuous positive airway pressure may be applied using a face mask; this has been shown to improve symptoms more quickly than oxygen therapy alone,[ and has in some studies been shown to reduce the risk of death. Severe respiratory failure requires treatment with endotracheal intubation and mechanical ventilation.

Heart failure is usually associated with a volume overloaded state. Therefore those with evidence of fluid overload should be treated initially with intravenous loop diuretics. In the absence of symptomatic hypotension intravenous nitroglycerin is often used in addition to diuretic therapy to improve congestive symptoms.

Volume status should still be adequately evaluated. Some heart failure patients on chronic diuretics can be over diuresis. In the case of diastolic dysfunction without systolic dysfunction, fluid resuscitation may in fact improve circulation by decreasing heart rate, which will allow the ventricles more time to fill. Even if the patient is edematous, fluid resuscitation may be the first line of treatment if the patient is hypotensive. The patient may in fact be intravascularly volume depleted, although if the hypotension is due to cardiogenic shock, additional fluid may make the situation worse. If the patient's circulatory volume is adequate but there is persistent evidence of inadequate end-organ perfusion, inotropes may be administered. In certain circumstances, a left ventricular assist device (LVAD) may be necessary.

Certain scenarios will require emergent consultation with cardiothoracic surgery. Heart failure due to acute aortic regurgitation is a surgical emergency associated with high mortality. Heart failure may occur after rupture of ventricular aneurysm. These can form after myocardial infarction. If it ruptures on the free wall, it will cause cardiac tamponade. If it ruptures on the intraventricular septum, it can create a ventricular septal defect. Other causes of cardiac tamponade may also require surgical intervention, although emergent treatment at bedside may be adequate. It should also be determined whether the patient had a history of a repaired congenital heart disease as they often have complex cardiac anatomy with artificial grafts and shunts that may sustain damage, leading to acute decompensated heart failure.

Acute myocardial infarction can precipitate acute decompensated heart failure and will necessitate emergent revascularization with thrombolytics, percutaneous coronary intervention, or coronary artery bypass graft.

Once the patient is stabilized, attention can be turned to treating pulmonary edema to improve oxygenation. Intravenous furosemide is generally the first line. However, patients on long-standing diuretic regimens can become tolerant, and dosages must be progressively increased. If high doses of furosemide are inadequate, boluses or continuous infusions of bumetanide may be preferred. These loop diuretics may be combined with thiazide diuretics such as oral metolazone or intravenous chlorthiazide for a synergistic effect. Intravenous preparations are preferred because of more predictable absorption. When a patient is extremely fluid overloaded, they can develop intestinal edema as well, which can affect enteral absorption of medications.

Another option is nesiritide, although it should only be considered if conventional therapy has been ineffective and the patient is extremely symptomatic.

Provided that the patient has an adequate blood pressure and is not bradycardic, a β1 selective beta-blocker such as metoprolol should be started. In cases of more severe cardiomyopathy, a beta blocker with alpha antagonist effects such as carvedilol or labetalol may be preferred. An ACE inhibitor or angiotensin receptor blockers should be started as well. If the ejection fraction is poor, an aldosterone receptor antagonist should be started as well.

The criteria for successful treatment of acute decompensated heart failure is the re-establishment of adequate oxygenation off of supplemental oxygen, adequate perfusion of end-organs, and return to baseline symptomatology. A parameter frequently used is return to "dry" weight. As the test is becoming more easily available, return to baseline BNP can also serve as a measure of adequate treatment.

Chronic management

The goal is to prevent the development of acute decompensated heart failure, to counteract the deleterious effects of cardiac remodeling, and to minimize the symptoms that the patient suffers. In addition to pharmacologic agents (oral loop diuretics, beta-blockers, ACE inhibitors or angiotensin receptor blockers, vasodilators, and in severe cardiomyopathy aldosterone receptor antagonists), behavioral modification should be pursued, specifically with regards to dietary guidelines regarding salt and fluid intake. Exercise should be encouraged as tolerated, as sufficient conditioning can significantly improve quality-of-life.

In patients with severe cardiomyopathy, implantation of an automatic implantable cardioverter defibrillator(AICD) should be considered. A select population will also probably benefit from ventricular resynchronization.

In select cases, cardiac transplantation can be considered. While this may resolve the problems associated with heart failure, the patient generally must remain on an immunosuppressive regimen to prevent rejection, which has its own significant downsides.

Palliative care and hospice

Without transplantation, heart failure caused by ischemic heart disease is not reversible, and cardiac function typically deteriorates with time. (In particular, diastolic function worsens as a function of age even in individuals without ischemic heart disease.) The growing number of patients with Stage D heart failure (intractable symptoms of fatigue, shortness of breath or chest pain at rest despite optimal medical therapy) should be considered for palliative care or hospice, according to American College of Cardiology/American Heart Association guidelines.


Prognosis

Prognosis in heart failure can be assessed in multiple ways including clinical prediction rules and cardiopulmonary exercise testing. Clinical prediction rules use a composite of clinical factors such as lab tests and blood pressure to estimate prognosis. Among several clinical prediction rules for prognosing acute heart failure, the 'EFFECT rule' slightly outperformed other rules in stratifying patients and identifying those at low risk of death during hospitalization or within 30 days. Easy methods for identifying low risk patients are:

  • ADHERE Tree rule indicates that patients with blood urea nitrogen <>
  • BWH rule indicates that patients with systolic blood pressure over 90 mm Hg, respiratory rate of 30 or less breaths per minute, serum sodium over 135 mmol/L, no new ST-T wave changes have less than 10% chance of inpatient death or complications.

A very important method for assessing prognosis in advanced heart failure patients is cardiopulmonary exercise testing (CPX testing). CPX testing is usually required prior to heart transplantation as an indicator of prognosis. Cardiopulmonary exercise testing involves measurement of exhaled oxygen and carbon dioxide during exercise. The peak oxygen consumption (VO2 max) is used as an indicator of prognosis. As a general rule, a VO2 max less than 12-14 cc/kg/min indicates a poorer survival and suggests that the patient may be a candidate for a heart transplant. Patients with a VO2 max<10>35 from the CPX test. The heart failure survival score is a score calculated using a combination of clinical predictors and the VO2 max from the cardiopulmonary exercise test.


Powered By Blogger