WELCOME TO HEALTH WORLD!!!

Search 2.0


The generally accepted definition of health is "a state of complete physical, mental, and social well-being and not merely the absence of disease or infirmity"

Sunday, April 26, 2009

Liver



The liver is a vital organ present in vertebrates and some other animals; it has a wide range of functions, a few of which are detoxification, protein synthesis, and production of biochemicals necessary for digestion. The liver is necessary for survival; a human can only last up to 24 hours without liver function.

The liver plays a major role in metabolism and has a number of functions in the body, including glycogen storage, decomposition of red blood cells, plasma protein synthesis, and detoxification. The liver is also the largest gland in the human body. It lies below the diaphragm in the thoracic region of the abdomen. It produces bile, an alkaline compound which aids in digestion, via the emulsification of lipids. It also performs and regulates a wide variety of high-volume biochemical reactions requiring very specialized tissues.


Anatomy

The adult human liver normally weighs between 1.4 - 1.6 kilograms (3.1 - 3.5 pounds), and it is a soft, pinkish-brown, triangular organ. It is both the largest internal organ and the largest gland in the human body.

It is located on the right side of the upper abdomen below the diaphragm anatomy. The liver lies to the right of the stomach and overlies the gallbladder.

Flow of blood

The splenic vein joins the inferior mesenteric vein, which then together join the superior mesenteric vein to form the hepatic portal vein, bringing venous blood from the spleen, pancreas, stomach, small intestine, and large intestine, so that the liver can process the nutrients and by-products of food digestion.

The hepatic veins of the blood can be from other branches such as the superior mesenteric artery.

Both the portal venules & the hepatic arterioles enter approximately one million identical lobules acini, likened to and changes in the size of chylomicrons lipoproteins of dietary origin brought about by the quantity & types of food fats.

Approximately 60% to 80% of the blood flow to the liver is from the portal venous system, and 1/5th of blood flow is from the hepatic artery.

Flow of bile

The bile produced in the liver is collected in bile canaliculi, which merge to form bile ducts.

These eventually drain into the right and left hepatic ducts, which in turn merge to form the common hepatic duct. The cystic duct (from the gallbladder) joins with the common hepatic duct to form the common bile duct.

Bile can either drain directly into the duodenum via the common bile duct or be temporarily stored in the gallbladder via the cystic duct. The common bile duct and the pancreatic duct enter the duodenum together at the ampulla of Vater.

The branchings of the bile ducts resemble those of a tree, and indeed the term "biliary tree" is commonly used in this setting.

The Biliary Tree.

(The Biliary Tree)

Regeneration

The liver is among the few internal human organs capable of natural regeneration of lost tissue; as little as 25% of a liver can regenerate into a whole liver.

This is predominantly due to the hepatocytes re-entering the cell cycle. There is also some evidence of bipotential stem cells, called ovalocyte, which exist in the Canals of Hering. These cells can differentiate into either hepatocytes or cholangiocytes (cells that line the bile ducts).



Traditional (Surface) anatomy

Peritoneal ligaments

Apart from a patch where it connects to the diaphragm, the liver is covered entirely by visceral peritoneum, a thin, double-layered membrane that reduces friction against other organs. The peritoneum folds back on itself to form the falciform ligament and the right and left triangular ligaments.

These "ligaments" are in no way related to the true anatomic ligaments in joints, and have essentially no functional importance, but they are easily recognizable surface landmarks.

Lobes

Traditional gross anatomy divided the liver into four lobes based on surface features. The falciform ligament is visible on the front (anterior side) of the liver. This divides the liver into a left anatomical lobe, and a right anatomical lobe.

If the liver flipped over, to look at it from behind (the visceral surface), there are two additional lobes between the right and left. These are the caudate lobe (the more superior), and below this the quadrate lobe.

From behind, the lobes are divided up by the ligamentum venosum and ligamentum teres (anything left of these is the left lobe), the transverse fissure (or porta hepatis) divides the caudate from the quadrate lobe, and the right sagittal fossa, which the inferior vena cava runs over, separates these two lobes from the right lobe.

Each of the lobes is made up of lobules, a vein goes from the centre of each lobule which then joins to the hepatic vein to carry blood out from the liver.

On the surface of the lobules there are ducts, veins and arteries that carry fluids to and from them.

Modern (Functional) anatomy

The central area where the common bile duct, hepatic portal vein, and hepatic artery enter is the hilum or "porta hepatis". The duct, vein, and artery divide into left and right branches, and the portions of the liver supplied by these branches constitute the functional left and right lobes.

The liver performs over 500 jobs, and produces over 1,000 essential enzymes.

The functional lobes are separated by a plane joining the gallbladder fossa to the inferior vena cava. This separates the liver into the true right and left lobes. The middle hepatic vein also demarcates the true right and left lobes. The right lobe is further divided into an anterior and posterior segment by the right hepatic vein. The left lobe is divided into the medial and lateral segments by the left hepatic vein. The fissure for the ligamentum teres (the ligamentum teres becomes the falciform ligament) also separates the medial and lateral segments. The medial segment is what used to be called the quadrate lobe. The functional lobes are further divided into a total of eight subsegments based on a transverse plane through the bifurcation of the main portal vein. The caudate lobe is a separate structure which receives blood flow from both the right- and left-sided vascular branches. The subsegments corresponding to the anatomical lobes are as follows:

  • or lobe in the Caudate's case.

Each number in the list corresponds to one in the table.

  1. Caudate
  2. Superior subsegment of the lateral segment
  3. Inferior subsegment of the lateral segment
    1. Superior subsegment of the medial segment
    2. Inferior subsegment of the medial segment
  4. Inferior subsegment of the anterior segment
  5. Inferior subsegment of the posterior segment
  6. Superior subsegment of the posterior segment
  7. Superior subsegment of the anterior segment

Physiology

The various functions of the liver are carried out by the liver cells or hepatocytes.

  • The liver produces and excretes bile (a greenish liquid) required for emulsifying fats. Some of the bile drains directly into the duodenum, and some is stored in the gallbladder.
  • The liver performs several roles in carbohydrate metabolism:
    • Gluconeogenesis (the synthesis of glucose from certain amino acids, lactate or glycerol)
    • Glycogenolysis (the breakdown of glycogen into glucose) (muscle tissues can also do this)
    • Glycogenesis (the formation of glycogen from glucose)
    • The breakdown of insulin and other hormones
  • The liver is responsible for the mainstay of protein metabolism. For instance, the liver can convert lactic acid to alanine.
  • The liver also performs several roles in lipid metabolism:
    • Cholesterol synthesis
    • Lipogenesis, the production of triglycerides (fats).
  • The liver produces coagulation factors I (fibrinogen), II (prothrombin), V, VII, IX, X and XI, as well as protein C, protein S and antithrombin.
  • The liver breaks down hemoglobin, creating metabolites that are added to bile as pigment (bilirubin and biliverdin).
  • The liver breaks down toxic substances and most medicinal products in a process called drug metabolism. This sometimes results in toxication, when the metabolite is more toxic than its precursor.
  • The liver converts ammonia to urea.
  • The liver stores a multitude of substances, including glucose (in the form of glycogen), vitamin B12, iron, and copper.
  • In the first trimester fetus, the liver is the main site of red blood cell production. By the 32nd week of gestation, the bone marrow has almost completely taken over that task.
  • The liver is responsible for immunological effects- the reticuloendothelial system of the liver contains many immunologically active cells, acting as a 'sieve' for antigens carried to it via the portal system.
  • The liver produces albumin, the major osmolar component of blood serum.

Currently, there is no artificial organ or device capable of emulating all the functions of the liver. Some functions can be emulated by liver dialysis, an experimental treatment for liver failure.


Diseases of the liver

Many diseases of the liver are accompanied by jaundice caused by increased levels of bilirubin in the system. The bilirubin results from the breakup of the hemoglobin of dead red blood cells; normally, the liver removes bilirubin from the blood and excretes it through bile.

There are also many pediatric liver diseases, including biliary atresia, alpha-1 antitrypsin deficiency, alagille syndrome, progressive familial intrahepatic cholestasis, and Langerhans cell histiocytosis to name but a few.


Liver transplantation

Human liver transplant was first performed by Thomas Starzl in USA and Roy Calne in Cambridge, England in 1963 and 1965 respectively.

Liver transplantation is the only option for those with irreversible liver failure. Most transplants are done for chronic liver diseases leading to cirrhosis, such as chronic hepatitis C, alcoholism, autoimmune hepatitis, and many others. Less commonly, liver transplantation is done for fulminant hepatic failure, in which liver failure occurs over days to weeks.

Liver allografts for transplant usually come from non-living donors who have died from fatal brain injury. Living donor liver transplantation is a technique in which a portion of a living person's liver is removed and used to replace the entire liver of the recipient. This was first performed in 1989 for pediatric liver transplantation. Only 20% of an adult's liver (Couinaud segments 2 and 3) is needed to serve as a liver allograft for an infant or small child.

More recently, adult-to-adult liver transplantation has been done using the donor's right hepatic lobe which amounts to 60% of the liver. Due to the ability of the liver to regenerate, both the donor and recipient end up with normal liver function if all goes well. This procedure is more controversial as it entails performing a much larger operation on the donor, and indeed there have been at least 2 donor deaths out of the first several hundred cases. A recent publication has addressed the problem of donor mortality, and at least 14 cases have been found. The risk of postoperative complications (and death) is far greater in right sided hepatectomy than left sided operations.

With the recent advances of non-invasive imaging, living liver donors usually have to undergo imaging examinations for liver anatomy to decide if the anatomy is feasible for donation. The evaluation is usually performed by multi-detector row computed tomography (MDCT) and magnetic resonance imaging (MRI). MDCT is good in vascular anatomy and volumetry. MRI is used for biliary tree anatomy. Donors with very unusual vascular anatomy, which makes them unsuitable for donation, could be screened out to avoid unnecessary operation.


Development

Fetal blood supply

In the growing fetus, a major source of blood to the liver is the umbilical vein which supplies nutrients to the growing fetus. The umbilical vein enters the abdomen at the umbilicus, and passes upward along the free margin of the falciform ligament of the liver to the inferior surface of the liver. There it joins with the left branch of the portal vein. The ductus venosus carries blood from the left portal vein to the left hepatic vein and then to the inferior vena cava, allowing placental blood to bypass the liver.

In the fetus, the liver develops throughout normal gestation, and does not perform the normal filtration of the infant liver. The liver does not perform digestive processes because the fetus does not consume meals directly, but receives nourishment from the mother via the placenta. The fetal liver releases some blood stem cells that migrate to the fetal thymus, so initially the lymphocytes, called T-cells, are created from fetal liver stem cells. Once the fetus is delivered, the formation of blood stem cells in infants shifts to the red bone marrow.

After birth, the umbilical vein and ductus venosus are completely obliterated two to five days postpartum; the former becomes the ligamentum teres and the latter becomes the ligamentum venosum. In the disease state of cirrhosis and portal hypertension, the umbilical vein can open up again.



Liver as food

Mammal and bird livers are commonly eaten as food by humans. Animal livers are rich in iron and Vitamin A, and cod liver oil is commonly used as a dietary supplement. Very high doses of Vitamin A can be toxic. In the US, the USDA specifies 3000 μg per day as a tolerable upper limit, which amounts to about 50 g of raw pork liver, or 30-90 g of polar bear liver. However, acute vitamin A poisoning is not likely to result from liver consumption, since it is present in a less toxic form than in many dietary supplements.



No comments:

Post a Comment

Powered By Blogger